El sitio de quimica

En este espacio podran ver y aprender acerca de quimica y veras lo divertido que es por que gracias a la qumica existen varias cosas relacionados con nuestra especialidad TELECOMUNICACIONES

lunes, 30 de mayo de 2011

BATERIAS

Batería, batería eléctrica, acumulador eléctrico o simplemente acumulador, se le denomina al dispositivo que almacena energía eléctrica, usando procedimientos electroquímicos y que posteriormente la devuelve casi en su totalidad; este ciclo puede repetirse por un determinado número de veces. Se trata de un generador eléctrico secundario; es decir, un generador que no puede funcionar sin que se le haya suministrado electricidad previamente mediante lo que se denomina proceso de carga.
Baterías de plomo-ácido
Batería de ebonita con terminales expuestos.
Está constituida por dos electrodos de plomo, de manera que, cuando el aparato está descargado, se encuentra en forma de sulfato de plomo (II) (PbSO4) incrustado en una matriz de plomo metálico (Pb); el electrólito es una disolución de ácido sulfúrico. Este tipo de acumulador se sigue usando aún en muchas aplicaciones, entre ellas en los automóviles. Su funcionamiento es el siguiente:
  • Durante el proceso de carga inicial, el sulfato de plomo (II) es reducido a plomo metal en el polo negativo (cátodo), mientras que en el ánodo se forma óxido de plomo (IV) (PbO2). Por lo tanto, se trata de un proceso de dismutación. No se libera hidrógeno, ya que la reducción de los protones a hidrógeno elemental está cinéticamente impedida en una superficie de plomo, característica favorable que se refuerza incorporando a los electrodos pequeñas cantidades de plata. El desprendimiento de hidrógeno provocaría la lenta degradación del electrodo, ayudando a que se desmoronasen mecánicamente partes del mismo, alteraciones irreversibles que acortarían la duración del acumulador.
  • Durante la descarga se invierten los procesos de la carga. El óxido de plomo (IV), que ahora ejerce de cátodo, es reducido a sulfato de plomo (II), mientras que el plomo elemental es oxidado en el ánodo para dar igualmente sulfato de plomo (II). Los electrones intercambiados se aprovechan en forma de corriente eléctrica por un circuito externo. Se trata, por lo tanto, de una conmutación. Los procesos elementales que trascurren son los siguientes:
    PbO2 + 2 H2SO4 + 2 e → 2 H2O + PbSO4 + SO42–
    Pb + SO42– → PbSO4 + 2 e

En la descarga baja la concentración del ácido sulfúrico, porque se crea sulfato de plomo (II) y aumenta la cantidad de agua liberada en la reacción. Como el ácido sulfúrico concentrado tiene una densidad superior a la del ácido sulfúrico diluido, la densidad del ácido puede servir de indicador para el estado de carga del dispositivo.
No obstante, este proceso no se puede repetir indefinidamente, porque, cuando el sulfato de plomo (II) forma cristales, ya no responden bien a los procesos indicados, con lo que se pierde la característica esencial de la reversibilidad. Se dice entonces que la batería se ha sulfatado y es necesario sustituirla por otra nueva. Las baterías de este tipo que se venden actualmente utilizan un electrólito en pasta, que no se evapora y hace mucho más segura y cómoda su utilización.
Cuando varias celdas se agrupan para formar una batería comercial, reciben el nombre de "vasos", que se conectan en serie para proporcionar un mayor voltaje. Dichos vasos se contienen dentro de una caja de polipropileno copolímero de alta densidad con compartimientos estancos para cada celda. La tensión suministrada por una batería de este tipo se encuentra normalizada en 12 Voltios si posee 6 elementos o vasos para vehículos ligeros y 24 Voltios para vehículos pesados con 12 vasos. En algunos vehículos comerciales y agrícolas antiguos todavía se utilizan baterías de 6 Voltios de 3 elementos.
Ventajas:
  • Bajo coste
  • Fácil fabricación
Desventajas:
  • No admiten sobrecargas ni descargas profundas, viendo seriamente disminuida su vida útil.
  • Altamente contaminantes.
  • Baja densidad de energia: 30 Wh/kg
  • Peso excesivo, al estar compuesta principalmente de plomo, paradójicamente es más liviana una carga de ladrillos que un acumulador de plomo de 24 volts,por esta razón su uso en automóviles eléctricos es considerado como un absurdo por los técnicos electrónicos con experiencia. Su uso se restringe por esta razón en aplicaciones estacionarias como por ejemplo fuentes de alimentación ininterrumpidas para equipos médicos.
Voltaje proporcionado: 2V Densidad de energia: 30 Wh/kg

[editar] Pila alcalina

En 1866, Georges Leclanché inventa en Francia la pila Leclanché, precursora de la pila seca (Zinc-Dióxido de Manganeso), sistema que aún domina el mercado mundial de las baterías primarias. Las pilas alcalinas (de “alta potencia” o “larga vida”) son similares a las de Leclanché, pero, en vez de cloruro de amonio, llevan cloruro de sodio o de potasio. Duran más porque el zinc no está expuesto a un ambiente ácido como el que provocan los iones de amonio en la pila convencional. Como los iones se mueven más fácilmente a través del electrólito, produce más potencia y una corriente más estable.
Su mayor costo se deriva de la dificultad de sellar las pilas contra las fugas de hidróxido. Casi todas vienen blindadas, lo que impide el derramamiento de los constituyentes. Sin embargo, este blindaje no tiene duración ilimitada. Las celdas secas alcalinas son similares a las celdas secas comunes, con las excepciones siguientes:
  1. El electrólito es básico (alcalino), porque contiene KOH.
  2. La superficie interior del recipiente de Zn es áspera; esto proporciona un área de contacto mayor.
Las baterías alcalinas tienen una vida media mayor que las de las celdas secas comunes y resisten mejor el uso constante.
El voltaje de una pila alcalina es cercano a 1,5 V. Durante la descarga, las reacciones en la celda seca alcalina son:
  • Ánodo: Zn (s) + 2 OH (aq) → Zn(OH)2 (s) + 2 e
  • Cátodo: 2 MnO2 (s) + 2 H2O (l) + 2 e → 2 MnO(OH) (s) + 2 OH(aq)
  • Global: Zn (s) + 2 MnO2 (s) + 2 H2O (l) → Zn(OH)2(aq) + 2 MnO(OH) (s)
El ánodo está compuesto de una pasta de zinc amalgamado con mercurio (total 1%), carbono o grafito.
Se utilizan para aparatos complejos y de elevado consumo energético. En sus versiones de 1,5 voltios, 6 voltios y 12 voltios se emplean, por ejemplo, en mandos a distancia (control remoto) y alarmas.

[editar] Baterías de níquel-hierro (Ni-Fe)

Thomas A. Edison con su batería de níquel-hierro
También denominada de ferroníquel o de nicohierro. Fué descubierta por Waldemar Jungner en 1899, posteriormente desarrollada por Thomas Alva Edison y patentada en 1903. En el diseño original de Edison el cátodo estaba compuesto por hileras de finos tubos formados por laminas enrolladas de acero niquelado, estos tubos están rellenos de hidróxido de níquel u oxi-hidróxido de níquel (NiOOH). El ánodo se componía de cajas perforadas delgadas de acero niquelado que contienen polvo de óxido ferroso (FeO) y óxido de bario (BaO). El electrólito es alcalino, una disolución de un 20% de potasa cáustica (KOH) en agua destilada. Los electrodos no se disuelven en el electrolito, las reacciones de carga/descarga son completamente reversibles y la formación de cristales de hierro preserva los electrodos por lo cual no se produce efecto memoria lo que confiere a esta batería gran duración.[1] Las reacciones de carga y descarga son las siguientes:
  • en el cátodo 2 NiOOH + 2 H2O + 2 e ↔ 2 Ni(OH)2 + 2 OH
  • en el ánodo Fe + 2 OH ↔ Fe(OH)2 + 2 e
(Descarga se lee de izquierda a derecha y carga de derecha a izquierda.)[2]
Ventajas:
  • Bajo coste
  • Fácil fabricación
  • Admite sobrecargas, repetidas descargas totales e incluso cortocircuitos sin pérdida significativa de capacidad
  • No es contaminante, no contiene metales pesados y el electrolito diluido se puede usar en aplicaciones agrícolas.
  • Muy larga vida útil, algunos fabricantes hablan de mas de 100 años de esperanza de vida en los electrodos y 1.000 ciclos de descarga 100% en el electrolito.[3] El electrolito se debe cambiar cada 20 años según instrucciones de uso redactadas por el propio Edison.[4]
  • Compuesta de elementos abundantes en la corteza de la tierra (hierro, níquel, potasio)
  • Funciona en un mayor rango de temperaturas, desde -40ºC hasta 46ºC
Desventajas:
  • Es demasiado duradera y poco lucrativa para un sistema monetario basado en el consumo cíclico y la obsolescencia programada.
Voltaje proporcionado: 1,2~1,4V
Densidad de energia: 40 Wh/Kg
Energia/volumen: 30 Wh/l
Potencia/peso: 100 W/kg

[editar] Baterías alcalinas de manganeso

Con un contenido de mercurio que ronda el 0,1% de su peso total, es una versión mejorada de la pila alcalina, en la que se ha sustituido el conductor iónico cloruro de amonio por hidróxido de potasio (de ahí su nombre de alcalina). El recipiente de la pila es de acero, y la disposición del zinc y del óxido de manganeso (IV) (o dióxido de manganeso) es la contraria, situándose el zinc, ahora en polvo, en el centro. La cantidad de mercurio empleada para regularizar la descarga es mayor. Esto le confiere mayor duración, más constancia en el tiempo y mejor rendimiento. Por el contrario, su precio es más elevado. También suministra una fuerza electromotriz de 1,5 V. Se utiliza en aparatos de mayor consumo como: grabadoras portátiles, juguetes con motor, flashes electrónicos.
El ánodo es de zinc amalgamado y el cátodo es un material polarizador compuesto con base en dióxido de manganeso, óxido de mercurio (II) mezclado íntimamente con grafito, y en casos raros, óxido de plata Ag2O (estos dos últimos son muy costosos, peligrosos y tóxicos), a fin de reducir su resistividad eléctrica. El electrólito es una solución de hidróxido potásico (KOH), el cual presenta una resistencia interna bajísima, lo que permite que no se tengan descargas internas y la energía pueda ser acumulada durante mucho tiempo. Este electrólito, en las pilas comerciales se endurece con gelatinas o derivados de la celulosa.
Este tipo de pila se fabrica en dos formas. En una, el ánodo consta de una tira de zinc corrugada, devanada en espiral de 0.051 a 0.13 mm de espesor, que se amalgama después de armarla. Hay dos tiras de papel absorbente resistente a los álcalis interdevanadas con la tira de papel de zinc, de modo que el zinc sobresalga por la parte superior y el papel por la parte inferior. El ánodo está aislado de la caja metálica con un manguito de poliestireno. La parte superior de la pila es de cobre y hace contacto con la tira de zinc para formar la terminal negativa de la pila. La pila está sellada con un ojillo o anillo aislante hecho de neopreno. La envoltura de la pila es químicamente inerte a los ingredientes y forma el electrodo positivo.
Alcalinas
  • Zinc 14% (ánodo) Juguetes, tocacintas, cámaras fotográficas, grabadoras
  • Dióxido de Manganeso 22% (cátodo)
  • Carbón: 2%
  • Mercurio: 0.5 a 1% (ánodo)
  • Hidróxido de Potasio (electrolito)
  • Plástico y lámina 42%
Contiene un compuesto alcalino, llamado Hidróxido de Potasio. Su duración es seis veces mayor que la de la pila de zinc-carbono. Está compuesta por dióxido de manganeso, MnO2, hidróxido de potasio (KOH), pasta de zinc (Zn), amalgamada con mercurio (Hg, en total 1%), carbón o grafito (C). Según la Directiva Europea del 18 de marzo de 1991, este tipo de pilas no pueden superar la cantidad de 0,025% de mercurio.
Este tipo de baterías presenta algunas desventajas:
  • Una pila alcalina puede contaminar 175.000 litros de agua, que llega a ser el consumo promedio de agua de toda la vida de seis personas.
  • Una pila común, también llamada de zinc-carbono, puede contaminar 3.000 litros de agua.
  • Zinc, manganeso (Mn), bismuto (Bi), cobre (Cu) y plata (Ag): Son sustancias tóxicas, que producen diversas alteraciones en la salud humana. El zinc, manganeso y cobre son esenciales para la vida, en cantidades mínimas, y tóxicos en altas dosis. El bismuto y la plata no son esenciales para la vida.

[editar] Baterías de níquel-cadmio (Ni-Cd)

Utilizan un cátodo de hidróxido de níquel y un ánodo de un compuesto de cadmio. El electrolito es de hidróxido de potasio. Esta configuración de materiales permite recargar la batería una vez está agotada, para su reutilización. Sin embargo, su densidad de energía es de tan sólo 50 Wh/kg, lo que hace que tengan poca capacidad. Admiten sobrecargas, se pueden seguir cargando cuando ya no admiten mas carga, aunque no la almacena. Admiten un gran rango de temperaturas de funcionamiento.
  • Voltaje proporcionado: 1,2V
  • Densidad de energía: 50 Wh/Kg
  • Capacidad usual: 0.5 a 1.0 Amperios (en pilas tipo AA)
  • Efecto memoria: muy Alto
  • Balocchi, Emilio (1996). Química General (3º edición). pp. 664. 

[editar] Baterías de níquel-hidruro metálico (Ni-MH)

Utilizan un ánodo de hidróxido de níquel y un cátodo de una aleación de hidruro metálico. Este tipo de baterías se encuentran menos afectadas por el llamado efecto memoria. No admiten bien el frío extremo, reduciendo drásticamente la potencia eficaz que puede entregar. Voltaje proporcionado: 1,2V Densidad de energía: 80 Wh/Kg Capacidad usual: 0.5 a 2.8 Amperios (en pilas tipo AA) Efecto memoria: bajo

[editar] Baterías de iones de litio (Li-ion)

Las baterías de iones de litio (Li-ion) utilizan un ánodo de grafito y un cátodo de óxido de cobalto, trifilina (LiFePO4) u óxido de manganeso. Su desarrollo es más reciente, y permite llegar a altas densidades de capacidad. No admiten descargas, y sufren mucho cuando éstas suceden por lo que suelen llevar acoplada circuitería adicional para conocer el estado de la batería, y evitar así tanto la carga excesiva, como la descarga completa. Apenas sufren el efecto memoria y pueden cargarse sin necesidad de estar descargadas completamente, sin reducción de su vida útil. No admiten bien los cambios de temperatura.
Voltaje proporcionado:
- A Plena carga: Entre 4.2V y 4.3V dependiendo del fabricante
- A carga nominal: Entre 3.6V y 3.7V dependiendo del fabricante
- A baja carga: Entre 2,65V y 2,75V dependiendo del fabricante (este valor no es un límite, se recomienda).
  • Densidad de energía: 115 Wh/Kg
  • Capacidad usual: 1.5 a 2.8 Amperios (en pilas tipo AA)
  • Efecto memoria: muy bajo

[editar] Baterías de polímero de litio (LiPo)

Son una variación de las baterías de iones de litio (Li-ion). Sus características son muy similares, pero permiten una mayor densidad de energía, así como una tasa de descarga bastante superior. Estas baterías tienen un tamaño más reducido respecto a las de otros componentes

FUENTE: WIKIPEDIA LA ENCICLOPEDIA LIBRE

MAS DE TECNOLOGIA QUIMICA EN CUESTION CON NUESTRA AREA




LOS DISTINTOS INTEGRADOS UTILIZADOS EN LA CONTRUCCION DE NUESTROS PROTOTIPOS SON DERIVADOS DE LA TECNOLOGIA QUIMICA POR QUE DICHOS INTEGRADOS PASAN POR SIERTOS PROCESOS PARA SE CRECION Y QUE CUMPLAN LAS NECESIDADES DEL QUE LOS CONSUME O VA A UTILIZAR DESPUES DE QUE EL PRODUCTO ES ELABORADO CON LAS DISTINTAS MATERIAS PRIMAS PASA POR SIERTAS PRUEBAS DE CALIDAD PARAV VER SI CUMPLE CON LA ESPECTATIVAS Y VER SI FUCONAMIENTO ES ELO ADECUADO

MINI ROBOTICA

jueves, 26 de mayo de 2011

EL NUEVO FACEBOOK

http://www.facebook.com/home.php?#!/profile.php?id=100002515592076&sk=wall
Aqui podras ver todo lo interesante que es la mini robotika y lo entretenido y divertido que es hacer prototipos

TECNOLOGIA QUIMICA

La tecnologia quimica son unan serie de procesos por los cuales pasa la materia prima para crear un producto en este caso hablaremos de los productos utilizados en la elaboracion de circuitos integrados para la construccion de nuestro prototípos.

jueves, 19 de mayo de 2011

Nuestro Facebook

http://www.facebook.com/home.php?#!/profile.php?id=100002451875907

Factores que afectan el equilibrio quimico

Factores que afectan el equilibrio químico

Para comprender los factores que afectan o causan el desplazamiento del equilibrio químico, hay que partir del principio de Le Châtelier que Fue formulado por el químico francés Henry Louis Le Châtelier en el año de 1888 Y y que establece lo siguiente:

Principio de Le Châtelier

Este principio establece que si un sistema en equilibrio es sometido a una perturbación o una tensión, el sistema reaccionará de tal manera que disminuirá el efecto de la tensión. De acuerdo a este principio, pueden haber variaciones de concentración, cambios de temperatura o presión.
Imagen5.gif

Concentración

 Cuando la concentración de una de las sustancias en un sistema en equilibrio se cambia, el equilibrio varía de tal forma que pueda compensar este cambio.
 Por ejemplo, si se aumenta la concentración de uno de los reaccionantes, el equilibrio se desplaza hacia la derecha o hacia el lado de los productos.
 Si se agrega más reactivos (como agregar agua en el lado izquierdo del tubo) la reacción se desplazará hacia la derecha hasta que se restablezca el equilibrio.
 Si se remueven los productos (como quitar agua del lado derecho del tubo) La reacción se desplazará hacia la derecha hasta que se restablezca el equilibrio.http://www.guatequimica.com/tutoriales/cinetica/Factores_que_afectan_el_equilibrio_quimico.htm

Ley de Masas

La ley de masas o ley de acción de masas establece que para una reacción química reversible en equilibrio a una temperatura constante, una relación determinada de concentraciones de reactivos y productos, tienen un valor constante. La ley fue enunciada en 1867 por Guldberg y Waage, y debe su nombre al concepto de masa activa, lo que posteriormente se conoció como concentración.[1]
En una reacción química elemental y homogénea,[2] cuando el cambio de energía libre de Gibbs ΔG = 0 debe cumplirse que
\frac{  [X_{k+1}]^{v_{k+1}}   ... [X_{m}]^{v_{m}} }{[X_{l}]^{v_{l}}   ... [X_{k}]^{v_{k}} }= K_{eq}
en equilibrio donde la constante de equilibrio Keq
K_{eq}\equiv e^{-\Delta G^{0}/k_{B}T}

Equlibrio Quimico

En un proceso químico, el equilibrio químico es el estado en el que las actividades químicas o las concentraciones de los reactivos y los productos no tienen ningún cambio neto en el tiempo. Normalmente, este sería el estado que se produce cuando el proceso químico evoluciona hacia adelante en la misma proporción que su reacción inversa. La velocidad de reacción de las reacciones directa e inversa por lo general no son cero, pero, si ambas son iguales, no hay cambios netos en cualquiera de las concentraciones de los reactivos o productos. Este proceso se denomina equilibrio dinámico.[

Termoquimica

Termoquímica, definición:
Rama de la Química física que estudia los efectos caloríficos que acompañan a las transformaciones físicas o químicas. Su fin es determinar las cantidades de energía desprendidas o absorbidas como Calor durante una transformación, así como desarrollar métodos de cálculo de dichos movimientos de calor sin necesidad de recurrir a la experimentación. Las cantidades de calor producidas al quemarse los combustibles o el valor calorífico de los alimentos son ejemplos muy conocidos de datos termoquímicos.
La termoquímica es parte de una rama mucho mas amplia que es la termodinámica la cual describe y relaciona las propiedades físicas de la materia de los sistemas macroscópicos, así como sus intercambios energéticos.
El calor que se transfiere durante una reacción química depende de la trayectoria seguida puesto que el calor no es una función de estado. Sin embargo, generalmente las reacciones químicas se realizan a P=cte o a V=cte, lo que simplifica su estudio.http://html.rincondelvago.com/termoquimica_2.html

Ley de Hess

Ley de Hess

En termodinámica, la ley de Hess, propuesta por Germain Henri Hess en 1840 establece que: «si una serie de reactivos reaccionan para dar una serie de productos, el calor de reacción liberado o absorbido es independiente de si la reacción se lleva a cabo en una, dos o más etapas», esto es que los cambios de entalpía son aditivos: ΔHneta = ΣΔHr.
Equivalentemente, se puede decir que el calor de reacción sólo depende de los reactivos y los productos, o que el calor de reacción es una función de estado; en este sentido la ley de Hess es la aplicación a las reacciones químicas del primer principio de la termodinámica; debido a que fue enunciada unos diez años antes que ésta, conserva su nombre histórico.[1]
Por ejemplo, el carbono en forma de grafito puede oxidarse hasta dióxido (1) o monóxido (2) de carbono, por otro lado, el monóxido de carbono puede oxidarse hasta dióxido (3). Como se ve a continuación, la suma de las entalpías de la reacción en dos pasos (2)+(3) es igual a la entalpía de la reacción en un paso (1):

\begin{matrix}
(1) \; & \mathrm{C(grafito)} & + & \mathrm{O_2(g)} & \rightarrow & \mathrm{CO_2(g)} & \; \; \Delta_R H_1 = -393\,\mathrm{kJ\cdot mol^{-1}}\;\; \\
\\
(2) \; & \mathrm{C(grafito)} & + & \frac{1}{2} \mathrm{O_2(g)} & \rightarrow & \mathrm{CO(g)} & \; \; \Delta_R H_2 = -111\,\mathrm{kJ\cdot mol^{-1}} \\
\\
(3)
& \mathrm{CO(g)} & + & \frac{1}{2} \mathrm{O_2(g)} & \rightarrow & \mathrm{CO_2(g)} & \; \; \Delta_R H_3 = -282\,\mathrm{kJ\cdot mol^{-1}}
\end{matrix}